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LEmER TO THE EDITOR 
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Depanment of Physics, PO Box 4348, University of Illinois at Chicago, Chicago, IL 60680, 
USA 

Received 26 November 1991 

Abstract. We develop a simple alternative approach to perturbation theory in one- 
dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and 
wavefunclions do not involve cumbersome sums over intermediate states which appear in 
the usual Rayleigh-SchrBdinger expansion. Unlike standard logarithmic perturbation 
theory. our approach does not utilize taking the logarithm of the wavefunction, and is 
therefore applicable in the same form to both the ground state and excited bound states. 

Performing explicit calculations in non-relativistic quantum mechanics using the 
familiar Rayleigh-Schrodinger perturbation expansion is rendered difficult by the 
presence of summations over all intermediate unperturbed eigenstates. Alternative 
perturbation procedures have been proposed to avoid this difficulty, notably the 
logarithmic perturbation theory (LPT) [l-41 and the Dalgamo-Lewis technique [5-8] .  
Indeed, in applying these methods to the nth excited state, one requires knowledge 
of the unperturbed eigenfunction &(x) but no knowledge of the other eigenvalues or 
eigenfunctions is necessary. LPT results are particularly simple for the ground state 
( n  = 0); however, the two presently known procedures for applying LPT to excited 
states ( n  > O )  involve either tedious explicit factoring out of the zeros of &')(x) [ l ,  21, 
or introduction of ghost states [4]. In this letter, starting from first principles, we 
develop a more economical scheme which yields simple perturbation theory formulae 
for both energy level shifts and corrections to the wavefunction for all states. Since 
our approach does not involve the logarithm of the wavefunction, no factoring out of 
the zeros of J I T ' ( x )  is needed. In fact, the formulae, worked out below for one- 
dimensional situations, are equally applicable to the excited states as well as to the 
ground state. Our results can be thought of as a generalization of LPT. 

Derivation. The Schrodinger equation with an unperturbed potential V ( x )  and a 
perturbing potential Ah(x)  is ( h  = 2m = 1) 

where A serves as the coupling constant and the primes denote differentiation with 
respect to x. Let us write the wavefunction $.(x) as 

*"(XI =f " (x ) *Y ' (x )  (2) 

in which $Lo'(x) is the known normalized eigenfunction of the unperturbed Schrodinger 
equation. Substituting (2) into (1) yields 
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For x++co, we obtain the familiar first-order result 

Also, the first-order correction to the wavefunction is 

Proceeding in the same manner, one obtains the following higher-order results 

E ~ 2 1 = ~ ~ m [ h ( x ) - E ' , ' ] f ~ ' ( ~ ) $ ~ 0 1 2 ( x ) d x  (14) 
m 

x $Lol'(x") dx". (17) 
Equations ( i i j-( i t)  are the main resuits of this ietter. 

One can see that, in general, f,!"(x) is singular at the zeros of Jl'.''(x) while 
@(x) f,!*'(x) remains finite at these points. This amounts to a shift in the position of 
zeros of the unperturbed wavefunction under the influence of a perturbing potential. 
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Also, the indefiniteness of integrals in the expression for fp’ is justified when one 
requires JI!? to be orthogonal to JI‘.“’ff’. Finally, the above results, being an expansion 
in powers of A, necessarily agree with the Rayleigh-Schrodinger results. For complete- 
ness it is proper to mention that there are several published treatments of Rayleigh- 
Schrodinger perturbation theory using wave and reaction operators, which do  not 
involve summations Over all intermediate unperturbed eigenstates [9-111. However, 
our derivation is simpler and more direct, and hence provides a useful alternative. 

For a ground state, one can easily show that the new formulae reduce to LPT results. 
For instance, take (14) for n = O  and perform integration by parts 

This is identical to the usual LPT ground state result, and the proof can be extended 
to higher orders. 

Example (a). Harmonic oscillator with linear perturbation (n = 1 state). Consider a 
one-dimensional harmonic oscillator potential V ( x )  =$02x2 with a linear perturbation 
of the form 

h(x) = Ax+ B. (19) 

Let us calculate the energy level shifts and corrections to the wavefunction for the first 
excited state. The normalized unperturbed eigenfunction is 

$\”(x) = N,x e - “ 2 / 4  N, = [ 
The first-order energy shift is easily obtained to be E\”= B. Knowing E:” ,  we go on 
to calculatefi”(x) using (13). 

0 “( ( I )  f, ( x ) =  -- x-- 

Note that fi” has a pole at x = 0, where JI?’ vanishes. 
The first-order correction to the wavefunction is given by 

Now the second-order calculations can be performed. First, we compute E?’ from (14). 

With Ei2’ available, we calculate the second-order correction to the wavefunction 

The un-normalized wavefunction, up to second order in A, is 

~ ~ ’ [ l + f ~ ” ( x ) + f j * ’ ( x ) ]  = N,x e 



L650 Letter to the Editor 

The energy level shifts due to higher orders in A can be seen to vanish since all 
of the integrands are odd functions. 

Example (b). Infinite square well with linear perturbation (n =2 state). Consider the 
infinite square well potential 

- ? r / 2 < x < a / 2  
otherwise. 

V ( x )  = 

Take a perturbation of the form 

h(x) = Ax i B. (27) 
Again, calculate the energy level shifts and corrections to the wavefunction: 

@iol(X) = 2 COS 3X. 

We first calculate E Y )  = B, and 

= $ [: (x’-;j tan 3x+- 9 x . ‘ 1  
The second-order energy level correction is 

The higher-order calculations are just exercises in elementary integrals. 

This work was supported in part by the US Department of Energy under grant 
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